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ABSTRACT

Microscope image analysis is challenging because of non-uniform
brightness, decreasing image contrast with tissue depth, poor edge
details and irregular and unknown structures. In this paper, we present
a nuclei segmentation and counting method using midpoint analysis,
shape-based function optimization and a MPP simulation with a spatial
birth-death process. Preliminary results demonstrate efficacy of the
proposed method.

Index Terms— biomedical image segmentation, marked point pro-
cess, fluorescence microscopy

I. INTRODUCTION
In recent years, optical microscopy has become a powerful tech-

nique in biomedical research. Multi-photon microscopy is capable of
producing image volumes deep into biological tissues and thus char-
acterizing large scale biological structures at subcellular resolution [1],
[2], [3]. The size and complexity of these images volumes make
manual approaches for visualization and analysis impractical. Image
segmentation methods are required to obtain quantitative, objective and
reproducible measurements [4]. Images collected using fluorescence
microscopy present challenges for image segmentation. They are in-
herently anisotropic and contain various aberrations and distortions that
vary in different axes [5] and increase with depth.

One of the recent image analysis techniques, the stochastic active
contour scheme (STACS) that makes use of image textures, edge,
and region-based information for image segmentation was proposed
in [6]. A topology preserving variant of STACS, that combines topology
with level set formulation, was developed in [7], and was shown to
outperform the seeded watershed algorithm [8]. Another topologically
consistent method was developed for segmentation of cell nuclei and
cellular boundaries [9]. A method to separate clustered nuclei in cellular
images using shape markers and marking function in a watershed-
like algorithm was developed [10] which was shown to outperform
the classical watershed [11] and marker-controlled watershed using
condition erosion [12]. The active mask approach [13], a recent region
based method, used the relative homogeneity of the statistical properties
of the foreground and background. A spatially adaptive method based
on local characteristics of nuclei boundary and a priori shape model
was described to address the segmentation of overlapping nuclei [14].
Another model-based approach that models a human segmenting an
image using attributed relational graphs was presented in [15]. A 3D
nuclei segmentation method based on level set deformable models and
convex optimization was developed in [16].

A marked point process (MPP) method that models objects using
stochastic techniques was described in [17]. A stochastic simulation
of MPP was used as a powerful image analysis approach in which
geometric properties of an image are used as the prior distribution and
image data are considered at the object level [18]. An application of
MPP to detect small brain lesions using a reversible jump Markov chain
Monte Carlo (RJMCMC) algorithm was described in [19]. A unified
Markov random field (MRF) and MPP based method was developed
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in [20]. Simulating stochastic processes requires a large number of
iterations and demands large computation resources [21]. To assign a
value that represents likelihood of the object with a given configuration
to each possible object orientation at each pixel and search in that high
dimensional space is also computationally intensive. Many adaptive
approaches have been developed to address these challenges.

Our datasets consist of 3D volumes of the kidney collected using
two-photon microscopy of rat kidneys labeled with Hoechst 33342
which labels cell nuclei. The blue channel of the images collected
results from the fluorescence of this label. One of our goals is to count
the number of nuclei per unit length and per unit volume in the image.
It is also desired to quantify area/volume of each nucleus.

In this paper, we propose a nuclei segmentation method in which we
use adaptive thresholding and midpoint analysis as pre-processing that
classifies components such that the computationally expensive MPP is
used only for some components and a relatively simpler shape-fitting
method for the rest of the components. Our MPP method is based on the
one used in [18]. In our implementation, we use ellipse as object model
and a modified energy function to account for non-uniform brightness
typically present in fluorescene microscopy images. Our proposed
approach is intended to provide automatic segmentation of microscopy
images with non-uniform brightness, consisting of multiple overlapping
objects that can be modeled using specific geometric shapes.

II. OUR PROPOSED METHOD

As shown in Figure 1, we first extract the blue color channel from
three channels of a stack of microscopy images that are obtained by
imaging a biological entity using different focal planes. This is called
original image stack I. A 3D adaptive thresholding is employed on the
I to get segmentation mask STh. For each image, midpoints analysis
is subsequently used to produce two distinct masks: ΛS and ΛM . A
distance function optimization method is used with the first mask and a
MPP based method is used with the second mask. Segmentation results
of the two methods, ΩS and ΩM respectively, are combined to produce
the final segmented image Ω.

Fig. 1: Our proposed segmentation method.

Adaptive Thresholding: Our method employs initially an adaptive
thresholding scheme. The objective of this step is to separate the
foreground that represents the presence of a biological quantity in an
image. This is done using two functions: a thresholding function fTh

that uses a 3D neighborhood information to assign signed and scaled
value to each pixel and a voting function fv that uses a Gaussian filter
to aggregate weighted votes, similar to the voting-based distributing
function used in [13].

Let I(t) ∈ [0, 1] be the pixel intensity at pixel t of the original image
stack I. Let (wTh,x × wTh,y × wTh,z) be the 3D window centered
at pixel t and let τt be the mean pixel intensity of this window. The
thresholding function fTh : [0, 1] → [−1, 1] is used to assign to each
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pixel t a linearly scaled value and a sign, based on its original intensity
I(t) and the local mean τt, as indicated by Eq. 1.

fTh(t) =

{I(t)−(τt+τc)
1−(τt+τc)

if I(t) ≥ (τt + τc)

−
(τt+τc)−I(t)

(τt+τc)
if I(t) < (τt + τc)

(1)

where τc is a positive constant. Let gv(x, y, z) be a 3D truncated

Gaussian function: gv(x, y, z) = e
−

|x|2+|y|2+|z|2

a2 , where x =
−wv,x, .., 0, .., wv,x, y = −wv,y , .., 0, .., wv,y and
z = −wv,z , .., 0, .., wv,z . The voting function fv(t) : [−1, 1] →
[−∞,∞] is used to assign each pixel a value that is the summation of
fTh values from its neighborhood, weighted using gv(x, y, z):

fv(t) = (fTh ∗ gv)(t) (2)

Now, based on the sign of fv(t), pixel t is segmented as foreground
mask: STh = {t : fv(t) ≥ 0}, where STh is the set of foreground
pixels from volume I. The outcome of this step: initial segmentation
mask STh is used in the subsequent steps to do nuclei segmentation.

The constant threshold τc is selected empirically for a particular
image stack based on the desired brightness of a segmented nuclei.
A higher τc reflects segmenting fewer pixels with intensities being
significantly above the local mean. τc ≥ 0 is necessary to avoid
assigning regions with pixel intensities ≈ 0 as foreground.
Object Model: In order to count the number of nuclei and quantify
their size in each image j, we use an ellipse as the shape model
for objects to be segmented. The shape parameters for each elliptical
object centered at (c) are the lengths of the semi-major and semi-
minor axes (a, b) and the orientation angle of the semi-major axis
with the horizontal (θ). Let ρ = (a, b, θ) be the parameter vector
such that ρ ∈ P , the parameter space. Based on the size of objects
to be segmented, we limit the parameter space with a ∈ (amin, amax)
b ∈ (bmin, bmax). Also, ∆θ be the stepsize considered for angular
orientations θ of an object.
Midpoint Analysis: Let STh,j be the segmentation mask for image
Ij . Let λ be a connected component of STh,j , using a 4-point
neighborhood. Small components can be safely removed to preserve
a high-level structural continuity. Therefore, λ in which the number
of pixels is smaller than a threshold ν is not considered for mid-
point analysis. The goal of midpoint analysis is to classify λs in
STh,j into two groups: single-object components (ΛS) and multiple-
objects components (ΛM ). We first determine the potential midpoint
locations/pixels by horizontally and vertically scanning the rows and
column respectively, as shown in Figure 2 (a), using a process similar to
the one described in [22]. This generates two sets of potential midpoints
{mc,x} and {mc,y} along the rows and columns of the connected
component λ, and which are depicted in blue and orange respectively,
in Figure 2 (a). A pixel that is detected in both {mc,x} and {mc,y} is
called as a midpoint pixel mc as indicated by the pixel colored in red.

(a) (b)

Fig. 2: Examples of midpoint analysis and selecting ellipse parameters
for shape-fitting.

We assume that the components with one or no midpoint pixel
mc contain a maximum of one object and hence belong to ΛS .
Components containing more than one mc may contain multiple objects
and belong to ΛM . Thus, ΛS = {λ : λ contains at most one mc} and
ΛM = {λ : λ contains more than one mc’s}, where ΛS ∩ ΛM = φ.
An example component shown in Figure 2 (a)(i) belongs to ΛS and

that in Figure 2 (a)(ii) belongs to ΛM .
Shape Fitting by Distance Function Optimization: We use a distance
function to determine the parameters of the elliptical object for a
λ ∈ ΛS in an image Ij . Let A1 be an elliptical disk centered at s
with parameters ρ = (a, b, θ). Let A2 be the outer elliptical ring with
parameters (a+ 1, b+ 1, θ). Using the empirical means and variances
of the pixels belonging to A1 and A2 at pixel s with parameters ρ:

µ1(s, ρ) =

∑
u∈A1

Ij(u)

N1
, σ1

2(s, ρ) =

∑
u∈A1

Ij
2(u)

N1
− µ1

2(s, ρ)

µ2(s, ρ) =

∑
u∈A2

Ij(u)

N2
, σ2

2(s, ρ) =

∑
u∈A2

Ij
2(u)

N2
− µ2

2(s, ρ)

we obtain B(s, ρ) the Bhattacharyya distance [20], [18] between the
distributions of the pixels contained A1 and those contained inA2:

B(s, ρ) =
1

4
(µ1(s, ρ)− µ2(s, ρ))

2
√

σ1
2(s, ρ) + σ2

2(s, ρ)

−
1

2
log(

2σ1(s, ρ)σ2(s, ρ)

σ1
2(s, ρ) + σ2

2(s, ρ)
)

(3)

Recall that ΛS consists of components of STh,j with at most one mc.
For a λ with no pixel determined as mc, the X and Y coordinates
of mc are approximated by rounding the means of the X-coordinates
of the set of {mc,x} and the Y-coordinates of the set of {mc,y},
respectively. Next, as shown in Figure 2 (b), a pixel sa ∈ λ that is
farthest (in Euclidean distance) from mc is obtained. The vector from
mc to sa is considered the semi-major axis, and a is considered to be
the length of the vector. The orientation θ is now the angle that the
vector from mc to sa subtends with the horizontal axis. A vector that
is perpendicular to the semi-major axis is drawn from mc within λ and
b is determined to be the length to the farthest pixel along that vector.
Next, a rectangular pixel window Wc,λ of size (wc × wc) centered at
mc is further examined for other candidates for the object center, and
a corresponding parameter space, Pλ = [a±wa]× [b±wb]× [θ±wθ]
is formed by varying a, b and θ. The center candidate and parameters
from Wc × (Pλ ∩P) that maximize B(s, ρ), are chosen as the ellipse
center cλ with parameters ρλ for λ, that is

(cλ, ρλ) = argmax
s∈Wc,ρ∈Pλ∩P

B(s, ρ)

where P is the parameter space defined for our object model. An object
centered at cλ with parameters ρλ is thus generated.
Marked Point Process: We employ a marked point process approach
based on the spatial birth-death process described in [18]. In our
method, an object can be generated only when its center pixel belongs
to ΛM . Let Γ be the configuration of objects with their corresponding
parameters. Γ = (Γs,Γρ), where Γs is a set of pixels that are object
centers and Γρ is a set of their respective parameters. Let H(Γ) be the
energy function for the Gibbs distribution function for the configuration
Γ during the spatial birth-death process simulation. Let HObject(s, ρ) be
the term representing how well the object centered at s with parameters
ρ fits the image data Ij :

HObject(s, ρ) =







1−B(s,ρ)
T

if B(s, ρ) ≥ T

e
−

B(s,ρ)−T

3B(s,ρ) − 1 if B(s, ρ) < T

where B(s, ρ) is distance measure described in Equation 3 and T
is a threshold. Let HBrightness(s) be the term accounting for the local
brightness in the neighborhood of s in an image. HBrightness(s) = τs,
where τs is the local mean for pixel s and was used in adaptive
thresholding. We define birth energy HB(s, ρ) and birth rate b(s, ρ)
at pixel s for parameter set ρ as:

HB(s, ρ) = HObject(s, ρ) +HBrightness(s),

b(s, ρ) = 1 + 9
max(HB(s, ρ))−HB(s, ρ)

max(HB(s, ρ)− min(HB(s, ρ)

Let bc(s) be the cumulative birth rate and bn(s) be the normalized
birth rate at pixel s:

bc(s) =
∑

ρ∈P

b(s, ρ) , bn(s) =
bc(s)

maxs∈ΛM
bc(s)
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Let HInter(s1, s2) be the energy term corresponding to the object
interaction model that accounts for the closeness or overlap between
the two objects centered at s1 and s2. It is determined based on the
Euclidean distance between the centers:

HOverlap(s1, s2) = max(0, 1−
‖s1, s2‖

2r
)

Let HPeak(s) be the energy term representing the local maxima of the
cumulative birth rate function. In case of object overlap, this term
causes objects not centered at the peaks of the birth rate function to
be more prone to being eliminated than the ones centered at the peaks.
The local maxima pixels are also used for configuration initialization.

HPeak(s) =

{

−hP if
∑

ρ∈P bc(s) has a local maxima at s.

0 Otherwise

where hP is a positive contant. Therefore the energy function is
obtained as:

H(Γ) = α{
∑

(s,ρ)∈Γ

HObject(s, ρ) +
∑

s∈Γs

HBrightness(s)}

+
∑

s1,s2∈Γs

HOverlap(s1, s2) +
∑

s∈Γs

HPeak(s)

where α is a positive constant. Now, a multiple birth-death process is
simulated to optimize the energy function according to [18]:

1) Determine HObject(s, ρ), HBrightness(s), HB(s, ρ), b(s, ρ), bc(s),
bn(s) and HPeak(s) for all s ∈ ΛM and ρ ∈ P .

2) Parameter Initialization: Set the inverse temperature β = β0 and
the discretization step δ = δ0.

3) Configuration Initialization: Start with Γ = Γ0 such that Γs
0

contains objects centered at s where bc(s) achieves local maxima
and Γρ) contains their parameters argmaxρ∈Pb(s, ρ) for each
s respectively.

4) Birth Step: For each s ∈ ΛM , if s 6∈ Γs add a point at s with
probability δbn(s) and give birth to an object of parameter ρ

with probability =
b(s,ρ)∑

ρ∈P b(s,ρ)
.

5) Death Step: Sort the configuration of points Γ from highest to
lowest values of HB(s, ρ). For each sorted point s obtain death

rate d(s, ρ) =
δa(s)

1+δa(s)
, where

a(s) = e−β(H(Γ/{s,ρ})−H(Γ)) and kill the object with probabil-
ity d(s).

6) Convergence Test: If all the objects born in the Birth Step are
killed in the Death Step, stop. Otherwise, increase β and decrease
δ by a geometric scheme using the common ratios ∆β and ∆δ

respectively and go back to the Birth Step.

The proposed nuclei segmentation method is described next:

Our Proposed Segmentation Method

Require: Original image volume
Extract blue color-channel from the volume to obtain a grayscale stack
I with images Ij , j = 1, 2, ...J
Do Adaptive Thresholding to I to get STh
for Each image Ij do

Obtain STh,j as segmentation mask for image j from STh
Use Object Model as ellipse with amin, amax, bmin, bmax and ∆θ
Do Midpoint Analysis to obtain ΛS and ΛM
for Each component λ ∈ ΛS do

Shape-Fitting by Distance Function Optimization with
mc,i’s, wc, wa, wb, wθ to produce (cλ, ρλ)

Do Marked Point Process using Ij , ΛM , α, β0, δ0, ∆β , ∆δ ,
hP , r and T to produce ΩM
Combine using OR operation ΩS and ΩM to produce final seg-
mentation result Ω

III. EXPERIMENTAL RESULTS
We tested our method using images from three datasets taken from

fluorescence microscopy of a rat kidney. The values used for the various
parameters were wTh,x = wTh,y = 15, wTh,z = 3, wv,x = wv,y =
2, wv,z = 1 for adaptive thresholding, ν = 10 pixels for midpoint

analysis, and wa = wb = 2 and wθ = 30◦ for shape fitting, α = 0.5,
β0 = 0.5, δ0 = 0.5, ∆β = 1.05, ∆δ = 0.95, hP = 2, r = 1

2
(amin +

amax) and T as 1 percentile of B(s, ρ), for marked point process. All
parameters were selected without fine-tuning and kept unchanged for
all datasets. It took between 70 and 110 MPP iterations for one image
to converge to the final configuration. We tested 32 images from each
dataset. Each image had three 8-bit color-channels. The details of our
datasets with shape parameters are listed in Table I.

Table I: Details of the datasets with specific parameters
Dataset I II III

Dimensions 512× 512 640× 640 512× 512
τc 10/255 5/255 10/255

(amin, amax) (4, 8) (6, 14) (4, 14)
(bmin, bmax) (2, 6) (4, 12) (2, 12)

∆θ 30◦ 20◦ 30◦

Figure 3 shows some examples of our segmentation results. In the
bottom row, n indicates the count of cell nuclei segmented using
elliptical disks from the original images shown in the top row. It can be
observed that the original images from all datasets possess non-uniform
brightness. Dataset-II contains a large completely dark region, whereas
Dataset-III has smaller regions of darkness. Images, especially from
Dataset-I and Dataset-II, contain labeling errors resulting in frequent
appearances of bright regions not representing nuclei. In all cases, our
proposed method segments most bright nuclei and many nuclei present
in the darker regions of images were also segmented successfully.
There were a few that were missed as well false detections as the
shape parameters were not correctly obtained in those cases. Objective
evaluation of our segmentation results proves to be difficult due to the
lack of ground truth data, for which the true shape and position of each
object in the volume is known [5]. In fact, ground truth is impossible
to obtain in fluorescent microscopy, since both the shape and position
of an object are fluid in living animals, and are inevitably altered in the
process of isolating and fixing tissues. Overall, our method successfully
segments nuclei, enabling their counting and shape characterization.

(a) Method from [18] (n =
241)

(b) Our Method (n = 628)

Fig. 4: Comparison of the segmentation results. Outlines of segmented
ellipse marks are represented by red and overlaid on the original image.

Figure 4 compares our method with the method described in [18]
which we denote as Mdes. We used the object model and MPP
parameters for Mdes and our method. Note that Mdes is applied
directly on the original image without any preprocessing such as
adaptive thresholding or midpoint analysis. Also, in Mdes the energy
term (H) consisted of the sum of only HObject and HInter. Segmentation
results (highlighted in red) from both methods are overlaid on the
original images. Method Mdes segments some nuclei at the center
correctly. However, it failed to detect many nuclei from the less brighter
regions , especially near the boundaries of the image. It also segmented
many nuclei at places where there is no nucleus present visually. Our
method provided a better segmentation detecting more nuclei correctly.
In terms of computational time, our method takes on an average 20
times less than method Mdes on the same machine. This is mainly
because Mdes computes the energy functions at every pixel of the
image as against the selective MPP treatment performed in our method.
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(a) n = 628 (b) n = 594 (c) n = 190 (d) n = 234 (e) n = 204 (f) n = 184

Fig. 3: Segmentation results of our proposed method (top row: original images, bottom row: segmentation results, columns 1-2: Dataset-I, columns
3-4: Dataset-II and columns 5-6 Dataset-III)

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for segmentation of cell nuclei
from fluorescence microscopy images of the kidney using midpoint
analysis, shape-fitting and marked point process. Preliminary results
obtained using various datasets of a rat kidney demonstrate that the
proposed method is capable of counting cell nuclei and modeling them
as individual objects with geometric shape parameters. In future, we
plan develop an improved object interaction function with a 3D MPP
approach. We also intend to incorporate differential geometry as an
improvement to midpoint analysis.
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